Non-visual crypsis: a review of the empirical evidence for camouflage to senses other than vision.
نویسنده
چکیده
I review the evidence that organisms have adaptations that confer difficulty of detection by predators and parasites that seek their targets primarily using sensory systems other than vision. In other words, I will answer the question of whether crypsis is a concept that can usefully be applied to non-visual sensory perception. Probably because vision is such an important sensory system in humans, research in this field is sparse. Thus, at present we have very few examples of chemical camouflage, and even these contain some ambiguity in deciding whether they are best seen as examples of background matching or mimicry. There are many examples of organisms that are adaptively silent at times or in locations when or where predation risk is higher or in response to detection of a predator. By contrast, evidence that the form (rather than use) of vocalizations and other sound-based signals has been influenced by issues of reducing detectability to unintended receivers is suggestive rather than conclusive. There is again suggestive but not completely conclusive evidence for crypsis against electro-sensing predators. Lastly, mechanoreception is highly understudied in this regard, but there are scattered reports that strongly suggest that some species can be thought of as being adapted to be cryptic in this modality. Hence, I conclude that crypsis is a concept that can usefully be applied to senses other than vision, and that this is a field very much worthy of more investigation.
منابع مشابه
Camouflage Effects of Various Colour-Marking Morphs against Different Microhabitat Backgrounds in a Polymorphic Pygmy Grasshopper Tetrix japonica
BACKGROUND Colour-marking polymorphism is widely distributed among cryptic species. To account for the adaptive significance of such polymorphisms, several hypotheses have been proposed to date. Although these hypotheses argue over the degree of camouflage effects of marking morphs (and the interactions between morphs and their microhabitat backgrounds), as far as we know, most empirical eviden...
متن کاملCamouflage, communication and thermoregulation: lessons from colour changing organisms.
Organisms capable of rapid physiological colour change have become model taxa in the study of camouflage because they are able to respond dynamically to the changes in their visual environment. Here, we briefly review the ways in which studies of colour changing organisms have contributed to our understanding of camouflage and highlight some unique opportunities they present. First, from a prox...
متن کاملEdge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief
Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effe...
متن کاملYou are what you eat: diet-induced chemical crypsis in a coral-feeding reef fish.
The vast majority of research into the mechanisms of camouflage has focused on forms that confound visual perception. However, many organisms primarily interact with their surroundings using chemosensory systems and may have evolved mechanisms to 'blend in' with chemical components of their habitat. One potential mechanism is 'chemical crypsis' via the sequestration of dietary elements, causing...
متن کاملAn evaluation of Tehran intercity bus drivers’ vision compared with the standards for Iran and Europe
Background: With an ever-increasing number of vehicles on the road, it is inevitable that drivers will need to call upon an increasing use of sensory and motor skills in order to negotiate safely through traffic. Vision is one of the major senses in human beings, and it is definitely necessary for safe driving. Approximately 95% of the sensory input to the brain required for driving comes from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 364 1516 شماره
صفحات -
تاریخ انتشار 2009